Math 304 Midterm 2 Sample

Name: \qquad

This exam has 9 questions, for a total of 100 points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	12	
2	5	
3	10	
4	10	
5	15	
6	12	
7	10	
8	16	
9	10	
Total:	100	

Question 1. (12 pts)
Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) If A is an $m \times n$ matrix, then A and A^{T} have the same rank.

Solution: True
(b) Given two matrices A and B, if B is row equivalent to A, then B and A have the same row space.

Solution: True.
(c) Given two vector spaces, suppose $L: V \rightarrow W$ is a linear transformation. If S is a subspace of V, then $L(S)$ is a subspace of W.

Solution: True.
(d) For a homogeneous system of rank r and with n unknowns, the dimension of the solution space is $n-r$.

Solution: True.

Question 2. (5 pts)
Find the angle between $v=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $w=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ in \mathbb{R}^{3}.

Solution: We denote the angle between v and w by θ.

$$
\cos \theta=\frac{\langle v, w\rangle}{\|v\|\|w\|}=\frac{1}{\sqrt{2}}
$$

So

$$
\theta=\arccos \left(\frac{1}{\sqrt{2}}\right)
$$

(In fact, in this case, we know $\theta=\pi / 4$).

Question 3. (10 pts)
Let V be the subspace of \mathbb{R}^{3} spanned by $v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Describe V^{\perp} by finding a basis of V^{\perp}.

Solution: V^{\perp} consists of vectors (a, b, c) which satisfy the following condition.

$$
(1,1,1) \cdot(a, b, c)=0
$$

That is,

$$
a+b+c=0
$$

So we have

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=s\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

It follows that

$$
\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)
$$

form a basis of V^{\perp}.

Question 4. (10 pts)
Given two lines

$$
L_{1}: x=t+1, y=3 t+1, z=2 t-1,
$$

and

$$
L_{2}: x=2 t-2, y=2 t+3, z=t+1,
$$

suppose a plane H is parallel to both L_{1} and L_{2}. Moreover, H passes through the point $(0,1,0)$. Find the equation of H.

Solution: A normal vector of H is orthogonal to the direction vector of $L_{1}: u=$ $(1,3,2)$ and the direction vector of $L_{2}: v=(2,2,1)$.
Calculate the cross product of u and v :

$$
u \times v=(-1,3,-4)
$$

So the equation of H is

$$
-x+3 y-4 z=3
$$

Question 5. (15 pts)

Given

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

(a) Find a basis of $\operatorname{Ker}(A)$.

Solution: First, use elementary row operations to get a row echelon form of A.

$$
\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So all elements in $\operatorname{Ker} A$ are of the form

$$
t\left[\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-4 \\
1 \\
0 \\
1
\end{array}\right]
$$

So

$$
v_{1}=\left[\begin{array}{r}
-2 \\
3 \\
1 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{r}
-4 \\
1 \\
0 \\
1
\end{array}\right]
$$

form a basis of the kernel.
(b) Find a basis of the row space of A.

Solution: The two nonzero rows in the row echelon form of A form a basis of the row space of A. That is

$$
\begin{gathered}
u_{1}=(1,0,2,4) \\
u_{2}=(0,1,-3,-1)
\end{gathered}
$$

form a basis of the row space of A.
(c) Find a basis of the range of A.

Solution: Note that the range of A is the same as the column space of A. Use the row echelon from the part (a), we see that the 1st and 2 nd of A form a basis of the range of A. That is,

$$
w_{1}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right], w_{2}=\left[\begin{array}{r}
0 \\
1 \\
4 \\
-1
\end{array}\right]
$$

form a basis of the range of A.
(d) Determine the rank of A.

Solution: The rank of A is the dimension of the row space. So the rank of A is 2. (In fact, we know that the rank of A is also the same as the dimension of the column space of A.)

Question 6. (12 pts)
Determine whether the following mappings are linear transformations.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T\binom{x_{1}}{x_{2}}=\binom{x_{1}+1}{x_{1}+x_{2}}
$$

Solution: T is not a linear transformation. For example,

$$
T\left(\binom{1}{0}+\binom{0}{1}\right)=\binom{2}{2}
$$

on the other hand,

$$
T\binom{1}{0}+T\binom{0}{1}=\binom{2}{1}+\binom{1}{1}=\binom{3}{2}
$$

So

$$
T\left(\binom{1}{0}+\binom{0}{1}\right) \neq T\binom{1}{0}+T\binom{0}{1}
$$

(b) $L: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ by

$$
L(p(x))=p^{\prime}(x)+p(x)
$$

Solution: Suppose $p_{1}(x), p_{2}(x) \in \mathbb{P}_{2}$ and $\alpha, \beta \in \mathbb{R}$.

$$
\begin{aligned}
L\left(\alpha p_{1}(x)+\beta p_{2}(x)\right) & =\alpha p_{1}^{\prime}(x)+\beta p_{2}^{\prime}(x)+\alpha p_{1}(x)+\beta p_{2}(x) \\
& =\alpha L\left(p_{1}(x)\right)+\beta L\left(p_{2}(x)\right)
\end{aligned}
$$

So L is a linear transformation.

Question 7. (10 pts)
Let $M_{2}(\mathbb{R})$ be the space of all (2×2) matrices with real coefficients. The set

$$
S=\left\{\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

is a basis of $M_{2}(\mathbb{R})$. Find the coordinates of $A=\left(\begin{array}{ll}5 & 3 \\ 3 & 1\end{array}\right)$ with respect to the basis S.

Solution: We need to write

$$
\left(\begin{array}{ll}
5 & 3 \\
3 & 1
\end{array}\right)=a_{1}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)+a_{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)+a_{3}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)+a_{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

That is, we need to solve the linear system

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+a_{3}+a_{4}=5 \\
a_{1}-a_{2}-a_{3}=3 \\
a_{1}+a_{2}=3 \\
a_{1}=1
\end{array}\right.
$$

Simply use back substitution. We have

$$
a_{1}=1, a_{2}=2, a_{3}=-4, a_{4}=6
$$

So

$$
[A]_{S}=\left[\begin{array}{c}
1 \\
2 \\
-4 \\
6
\end{array}\right]
$$

Question 8. (16 pts)
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
L\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{2} \\
x_{1}-x_{2}
\end{array}\right)
$$

(a) Find the matrix representation of L with respect to the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3}.

Solution:

$$
\begin{gathered}
L\left(e_{1}\right)=L\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
L\left(e_{2}\right)=L\binom{0}{1}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
\end{gathered}
$$

So the matrix representation of L with respect to the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3} is

$$
\left(\begin{array}{rr}
1 & 1 \\
0 & 1 \\
1 & -1
\end{array}\right)
$$

(b) Let $u_{1}=\binom{1}{0}$ and $u_{2}=\binom{1}{1}$. Moreover, let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Find the matrix representation of L with respect to the basis $\left\{u_{1}, u_{2}\right\}$ of \mathbb{R}^{2} and the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3}.

Solution:

$$
\begin{aligned}
& L\left(u_{1}\right)=L\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
& L\left(u_{2}\right)=L\binom{1}{1}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Now we need to find the coordinate vectors of $L\left(u_{1}\right)$ nad $L\left(u_{2}\right)$ with respect to the basis $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3}.

$$
L\left(u_{1}\right)=a v_{1}+b v_{2}+c v_{3}
$$

Solve for a, b, c, and we get

$$
\left[L\left(u_{1}\right)\right]_{B}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

Similarly, we obtain

$$
\left[L\left(u_{2}\right)\right]_{B}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

So the matrix representation of L in this case is

$$
\left(\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
1 & 0
\end{array}\right)
$$

Question 9. (10 pts)
Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation. Its matrix representation with respect to the standard basis of \mathbb{R}^{2} is

$$
\left(\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right) .
$$

(a) Find the transition matrix from the basis $\left\{u_{1}, u_{2}\right\}$ to the standard basis $\left\{e_{1}, e_{2}\right\}$, where

$$
u_{1}=\binom{2}{3}, u_{2}=\binom{1}{2}
$$

Solution: The transition matrix is

$$
U=\left(\begin{array}{cc}
\mid & \mid \\
u_{1} & u_{2} \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)
$$

(b) Find the matrix representation of L with respect to $\left\{u_{1}, u_{2}\right\}$.

Solution: The matrix representation of L with respect to $\left\{u_{1}, u_{2}\right\}$ is

$$
U^{-1}\left(\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right) U
$$

where U is the matrix from part (a). In this case, an easy way to find U^{-1} is

$$
U^{-1}=\frac{1}{\operatorname{det} U}\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

So

$$
U^{-1}\left(\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right) U=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)\left(\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

